遷移金属における異常ホール効果および

スピンホール効果 紺 谷 浩 (Atlented)

紹谷浩 平島大 井上順一郎 〈名古屋大学理学研究科 464-8602 名古屋市千種区不老町 e-mail: kon@slab.phys.nagoya-u.ac.jp〉
 〈名古屋大学理学研究科 464-8602 名古屋市千種区不老町 e-mail: dai@slab.phys.nagoya-u.ac.jp〉
 〈名古屋大学工学研究科 464-8603 名古屋市千種区不老町 e-mail: inoue@nuap.nagoya-u.ac.jp〉

金属中では外部磁場による正常ホール効果に加え、様々なホール効果が発現する。例えば強磁性金属では磁化に比例したホール電流 が発生する「異常ホール効果」が、また常磁性金属では電流を伴わないスピン流が発生する「スピンホール効果」が観測される。こ れらの外部磁場を必要としないホール効果は、輸送現象における原理的問題として、またはスピントロニクスにおけるデバイス開発 の観点から、近年ますます盛んに研究されている。本稿では、物質固有の値を示す内因性ホール効果に焦点を絞り、最近の理論の発 展について解説する。特に遷移金属で、伝導電子が軌道角運動量に由来する一種の Aharonov-Bohm 位相を獲得する結果、巨大な内 因性ホール効果が出現することを説明する。

1. はじめに

ホール効果とは、外部電場 E_x と垂直方向に金属中に電子 の流れが生じる現象である。我々に最もなじみの深いホール 効果は、磁場 B_z 中においてローレンツ力によってホール電 流 J_y^c が生じる、正常ホール効果であろう¹⁾。 J_y^c と E_x との 比はホール伝導度 $\sigma_{yx} = J_y^c/E_x$ を与え、また $\sigma_{xx} = J_x^c/E_x$ は縦電気伝導度である。なお強磁場中では σ_{yx} が量子化さ れる量子ホール効果が起きる。ホール効果は金属電子論の 発展において、しばしば重要な役割を果たしてきた。

興味深いことに、外部磁場を必要としないホール効果も 存在する。本稿で扱う、電子系の磁化に比例する「異常ホー ル効果」はその一例である。異常ホール効果は正常ホール効 果の発見後まもなく、Fe,Co,Niといった強磁性金属で発見 された^{2,3)}。さらに磁性不純物を含む金属や、Ce,U等を含 む遍歴f電子をもつ金属化合物(重い電子系)において、磁 場中で磁化に比例する異常ホール効果が観測される。異常 ホール効果の理論研究は、1954年にKarplusとLuttinger (KL)によって端緒が開かれた⁴⁾。彼らの提示した機構は多 バンド構造とスピン軌道相互作用に由来し、不純物散乱を 必要としないことから内因性機構と呼ばれる。一方、不純 物散乱を起源とする外因性機構はSmitやBergerによって 研究され、スキュー散乱機構⁶⁾やサイドジャンプ機構⁶⁾の 存在が示された。具体的な金属でどの機構が優勢であるか について、現在も研究が続いている。

縦電気伝導度や正常ホール伝導度など一般の輸送現象は、 電子が各バンドに拘束されたまま電場により加速されて生 じる「バンド内輸送現象」である。その最も重要なパラメー ターは、電子の衝突から次の衝突までの平均時間、つまり 緩和時間 τ である。ボルツマン方程式に基づく近似理論で は、 σ_{xx} 、 σ_{xy} はそれぞれ τ 、 τ^2 に比例し、純良な結晶では 発散的に増大する^{7,8)}。ところが KL が発見した内因性ホー ル効果は、電場により仮想的にバンド間励起された電子が もたらす「多バンド輸送現象」である。そのため異常ホー ル伝導度 σ_{AH} は、不確定性原理が与えるバンド間励起の寿 命 \hbar/Δ (Δ はフェルミ準位近傍におけるバンド間のエネル ギー差)に比例し、 τ に依存しない。つまり内因性ホール効 果の最大の特徴は、ホール伝導度が結晶の乱れや不純物に あまり依存せず、ほぼ物質固有の値を示すことにある。し かし1954年のKLの理論は万人が納得できる直感的説明に 欠き、さらに具体的な模型に基づく定量的研究が長年なさ れなかったためか、外因性機構と比べて軽視された時代が 続いた。

しかし 90 年代に入り、まず重い電子系における巨大な異 常ホール効果が、重い電子系の有効模型である周期アンダー ソン模型に基づく解析により、内因性機構として符号や絶対 値が再現可能であることが示されたジ。電流演算子は波数表 示のハミルトニアン \hat{H}_{k} と電子の電荷eより $\hat{J}_{k}^{c} = e \nabla_{k} \hat{H}_{k}$ で与えられるが、 \hat{H}_{k} に含まれる f 波動関数の位相因子の 微分から電場に直交する「異常速度」が出現し、異常ホー ル効果を与えることが線形応答理論(中野・久保理論)に 基づき厳密に示された。さらに 2000 年以降、第一原理計算 によるバンド構造に基づき Fe¹⁰⁾ や SrRuO₃¹¹⁾、Ni、Co¹²⁾ の内因性異常ホール効果が計算され、実験結果の定量的再 現に成功した。今日では、内因性機構は多くの金属で重要 な寄与を持つと考えられている。その一方で異常ホール効 果の理解は、物質ごとのバンド構造の特徴を議論する「各 論」にとどまっていたといえる。本稿では、*d* 電子系にお ける顕著な内因性ホール効果の起源が ƒ 電子系と同様、原 子軌道の位相因子--つまり角運動量であることを示し、各種 遷移金属の包括的理解を提示したい。

磁性金属における異常ホール効果と同様の機構が、常磁 性金属においても働くことが予言されていた。^{14,15)} これが, 外部磁場が印加されていない常磁性金属におけるホール効 果—スピンホール効果である。スピンホール効果は,外部 電場 E_x の垂直方向に電荷の流れ(電流)を伴わないスピ ンz 成分の流れ(スピン流) $J_y^s = (\hbar/2e) (J_y^{\uparrow} - J_y^{\downarrow})$ が生じ る現象であり,異常ホール効果と親戚の関係にある。この スピンホール効果は磁場を用いないスピン流生成機構とし て,スピントロニクスの観点からも近年注目を集めている ¹⁶⁾。内因性スピンホール効果の理論的研究は,まず半導体 を舞台に始まり,続いて単純金属,常磁性金属におけるス ピンホール効果の実験的・理論的研究が活発となった。本稿 では主に,近年理解が進んだ遷移金属における内因性ホー ル効果 ― 異常ホール効果およびスピンホール効果 ― の研究 を紹介し,これらの統一的描像を提示したい。

2. 半導体におけるスピンホール効果

本章ではまず半導体における内因性機構のスピンホール 効果について概説する。その起源はスピン軌道相互作用で あるが、半導体では大別して,結晶格子の反転対称性の破 れによる Dresselhaus 型スピン軌道相互作用¹⁷⁾と,構造反 転対称性の破れによる Rashba 型スピン相互作用^{18,19)}があ る。前者の典型物質は閃亜鉛鉱型半導体であり,後者の典 型例は,MOS(金属/酸化物/半導体)構造における2次 元半導体(2DEG)である。半導体の価電子帯は,原子内 スピン軌道相互作用(LS 結合)によりバンド分裂すること が知られている。p型半導体における Dresselhaus 型スピン 軌道相互作用は, この LS 結合が大元である。

半導体におけるスピンホール効果の理論的研究は,Luttinger 模型に基づく村上・永長・Zhang²⁰⁾の研究と,Rashba 型スピン軌道相互作用に基づくSinova ら²¹⁾の研究を皮切り に,研究に火がついた。Luttinger 模型に基づく理論では, スピンホール効果の発現機構を,波数空間における有効磁 場であるベリー曲率に帰着させる。この模型の解説は文献 ²²⁾に詳しいので,ここでは 2DEG における Rashba 模型 について解説する。

Rashba 模型のハミルトニアンは,

$$H = \frac{\hbar^2 k^2}{2m} + \lambda_R (\boldsymbol{\sigma} \times \boldsymbol{k})_z \tag{1}$$

と与えられる。第2項が Rashba 型と呼ばれるスピン軌道 相互作用であり、波数に比例するという特徴を有する。第 2項が存在する結果,自由電子ガスのエネルギー分散関係 は波数ベクトル k と電子スピンが直交するようにスピン分 裂する。Rashba 型スピン軌道相互作用においては,電子の 運動方向と直交する方向に有効磁場が作用していると見な すことができる。Sinova S²¹⁾は,このような Rashba 模型 を用いて,バリスティック伝導領域でスピンホール伝導度 が λ_R の大きさによらず $e/8\pi$ という大きな値を取ること を示した。これは,バンドの分裂幅 Δ が λ_R に比例するた め, $\sigma_{SH} \sim \lambda_R \cdot (\hbar/\Delta)$ が定数となるためと理解される。

ここで、線形応答理論に基づく異常ホール伝導度 σ_{AH} と スピンホール伝導度 σ_{SH} の計算手法を紹介する:

$$\sigma_{xy}^{\alpha\beta} = \left. \frac{\partial}{\partial \omega} \mathrm{Im} K^{\alpha\beta}(\omega + i0) \right|_{\omega=0}, \qquad (2)$$

ただし $\sigma_{AH} = \sigma_{xy}^{cc}$ 、 $\sigma_{SH} = \sigma_{xy}^{sc}$ である。 $K^{\alpha\beta}(\omega + i0)$ は、 松原周波数 $i\omega_l = 2\pi i lT$ (lは整数)を変数とするカレント J_y^{α} 、 J_x^{β} ($\alpha, \beta = c, s; c$ は電流、sはスピン流を表す)の相 関関数

$$K^{\alpha\beta}(i\omega_l) = \int_0^{1/T} \langle J_x^{\alpha}(\tau) J_y^{\beta}(0) \rangle e^{i\omega_l \tau} d\tau$$
(3)

を、虚軸上から実軸上に解析接続 $i\omega_l \rightarrow \omega + i0$ することで 得られる。式 (2) や (3) は温度グリーン関数の手法を用い て計算できる。

内因性スピンホール効果が、有限の緩和時間を持つ拡散 伝導領域においても、バリスティック伝導領域と同様に大き な寄与をもたらすことを確認するためには,電子散乱の効 果を吟味する必要がある。拡散伝導領域においては,電流 保存則を満たすように理論を構築する必要がある。井上ら ²³⁾は,不純物の電子散乱効果よるバーテックス補正をワー ド恒等式に基づいて計算した結果,バリスティック伝導に よるスピンホール伝導度を,バーテックス補正が完全に打 ち消すことを示した。この解析は,内因性ホール効果にお けるバーテックス補正の重要性を顕著に示したものと言え よう。その重要性は、Rashba型スピン軌道相互作用を含む 2DEGを仮想的に磁化させた系における異常ホール伝導度 が、拡散伝導領域でゼロとなることにも顕われる^{24, 25, 26)}。 ただし,この場合は,フェルミ準位の位置により結果が異 なることに注意する必要がある。

なお (1) 式の模型では、電流演算子が Rashba 型スピン軌 道相互作用に由来する $J_{y(x)} = +(-)e\lambda_R\hbar\sigma_{x(y)}$ という波数 に依存しない異常速度を含むため,バーテックス補正が重 要であった。一方,Dresselhaus 型スピン軌道相互作用は, 波数の 3 次に比例する項を含むため,Rashba 型模型のよ うな打ち消し合いが生ぜず,スピンホール伝導度は有限の 値を取ることが確認されている^{27,28)}。さらに,以下の章で 紹介する,Sr₂RuO₄ や遷移金属の有効模型である t_{2g} 軌道 模型や 9 軌道強束縛模型では,局所的不純物ポテンシャル によるバーテックス補正は非常に小さいことが確認されて いる。

緩和時間が有限の拡散伝導領域と,無限のバリスティック伝導領域でのスピンホール効果はどのように繋がるのだろうか。上記の説明では,スピンホール伝導度は前者ではゼロ,後者では定数となっているので,このままではうまく繋がらない。これを議論するために,振動数に依存するスピンホール伝導度を求めると

$$\sigma_{\rm SH} = \frac{e}{8\pi} \frac{(\tau\omega)^2}{1 + (\tau\omega)^2}$$

となる。^{23, 29)} 緩和時間 τ を有限のまま $\omega \rightarrow 0$ とすると, $\sigma_{SH} = 0$, 逆に ω を有限として $\tau \rightarrow \infty$ とすると, $\sigma_{SH} = e/8\pi$ が再現される。半導体におけるスピンホール効果の実験は主に 2 グループで行われているが、その詳細について は文献^{30, 31, 22)} を参照していただきたい。

また Rashba 模型のスピンホール伝導度は,超伝導状態 ではフェルミ準位上の準粒子の寄与がなくなり、Fermi sea の構成電子からの寄与のみになるため、 λ_R が超伝導ギャッ プより十分大きければ絶対零度で $e/8\pi$ になる。³²⁾超伝導状 態のスピンホール伝導度は,電場の代わりに熱勾配を利用 した熱スピンホール効果を測定することで,原理上観測可 能である。

3. 遷移金属におけるスピンホール効果

2006年以降、5d 遷移金属である Pt におけるスピンホー ル伝導度が Pt/Ni-Fe 接合³³⁾ や強磁性/非磁性複合構造³⁴⁾ に おいて測定され、n型半導体の104倍にも達することが明 らかになり、遷移金属における研究が急務となった。遷移 金属には d 軌道の自由度という、真空中の電子が持たない 自由度が存在する。我々はまず、4d 遷移金属化合物である Sr_2RuO_4 のスピンホール伝導度を理論的に解析し、軌道自 由度とLS 結合にによって、Pt 並みに巨大なスピンホール 効果の発現が期待できることを示した35)。その後、第一原 理計算³⁶⁾ や有効強結合模型³⁷⁾ に基づく理論計算により、Pt のスピンホール効果が内因性として理解できることが分かっ た。さらに文献³⁸⁾ において 4d,5d 金属におけるスピンホー ル効果の網羅的研究が実施され、(i)軌道自由度を有する遷 移金属(化合物)では、特殊なバンド構造に依らずとも巨 大なスピンホール効果が期待できること、(ii) スピンホー ル伝導度の符号や絶対値を与える簡単な規則が存在するこ とが明らかになり、さらに (iii) スピンおよび異常ホール効 果の総合的理解が可能になった。本章では、遷移金属のス ピンホール効果に関する理論研究について、順を追って解 説したい。

3.1. Sr₂RuO₄、および軌道 Aharonov-Bohm 効果

軌道自由度の役割を考える上で我々がもっとも単純だと 考える、2次元正方格子上の t_{2g} 軌道強束縛模型を考察する。 この模型は p 波超伝導体 Sr₂RuO₄ の有効模型であり、各格 子点に Ru の 3 軌道—xz 軌道、yz 軌道、xy 軌道—が存在す る。そのうち xz 軌道と yz 軌道を図 1(a) に示す。t = 0.2eV, t' = 0.1t は hopping integral である。xz, yz 軌道に関する 運動項八ミルトニアンの行列表示は、

$$\hat{H}_{\rm K}(\boldsymbol{k}) = \begin{pmatrix} \xi(k_x) & g(\boldsymbol{k}) \\ g(\boldsymbol{k}) & \xi(k_y) \end{pmatrix}, \qquad (4)$$

である。ただし第 1、第 2行(列)はそれぞれ $|xz\rangle$, $|yz\rangle$ に対応し、 $\xi(k_{x(y)}) = -2t \cos k_{x(y)}$, $g(\mathbf{k}) = -4t' \sin k_x \sin k_y$ である。さらに Ru サイトにおけるスピン・軌道相互作用(LS 結合項) $\hat{H}_{\text{LS}} = \lambda \sum_i \mathbf{l}_i \cdot s_i$ によって、さらに軌道間の混成が起きる。この物質の λ の値はおよそ 0.4t(= 0.08eV)である³⁹⁾。図 1(b)に Sr₂RuO₄のフェルミ面を示す。 α, β は xz, yz軌道から成り、 γ は xy軌道から成る。図の陰の部分が3 つのバンドが密集し、バンド間エネルギー差が $\Delta \approx 0.5t$ と小さいことから、内因性ホール効果への寄与が大きい。

図 1 (a)Sr₂RuO₄ の有効模型である、正方格子 t_{2g} 軌道強束縛模型。 (b)Sr₂RuO₄ のフェルミ面。 α , β は主に xz, yz 軌道から成り、 γ は主に xy 軌道から成る。ホール効果に寄与するバンドが密集した個所を、楕円 の陰で記した。

強束縛模型が与えられれば、スピンホール伝導度 σ_{SH} は線形応答理論に基づき一意に計算可能である。その結 果、Sr₂RuO₄ の RuO₄ 一層あたりのスピンホール伝導度 は、ほぼ $-e/2\pi$ である。Sr₂RuO₄ の面間距離は 6\AA ゆえ、 Sr₂RuO₄ のスピンホール伝導度は約 $-670 \Omega^{-1} \text{cm}^{-1}$ とな り、その絶対値は Pt における実験値 240 ~ 400 $\Omega^{-1} \text{cm}^{-1}$ より大きい。

図 2 \downarrow スピン電子に対する、軌道由来の有効磁束。電子がスピン軌道相 互作用によって xz 軌道から yz 軌道へと「乗り移る」とき、実効的 AB 位相因子 i を獲得する。なお \uparrow スピン電子の有効磁束は、逆向きになる。

ここで、「実空間表示」に基づく内因性ホール効果の直感 的説明を紹介し、原子軌道の自由度からホール効果の原因と なる有効磁場が出現する「軌道 Aharonov-Bohm 効果」につ いて説明しよう⁵⁷⁾。図2の矢印で示したような、 t_{2g} 模型のユ ニットセルの半分の面積を囲む経路を、 \downarrow スピン電子が運動 する場合を考える。簡単のためxy軌道を無視し、また各サ イトの平均電子数は1以下とする。スピン軌道相互作用 $\lambda l \cdot s$ より、 \downarrow 電子の軌道波動関数は $|l_z = +1\rangle = |xz\rangle + i|yz\rangle$ とな る。このとき図の経路を一周すると、 \downarrow スピン電子は軌道の位 相差に由来するベリー位相因子iを獲得する。つまり、xz軌 道とyz軌道の位相差 π がそのまま電子のベリー位相になり、 さらに経路を反転するとベリー位相も反転する。このベリー 位相は、経路中を貫ぬく仮想磁束 $\Phi = \phi_0/4(\phi_0 = hc/e$ は磁 束単位)による Aharonov-Bohm(AB) 位相と類似しており、 電子は有効磁場を感じて外部電場と垂直方向にドリフト運動 する。↑電子の場合、軌道波動関数は $|l_z = -1\rangle = |xz\rangle - i|yz\rangle$ ゆえ、仮想磁束による AB 位相因子は-iである。つまり有 効磁場の向きはスピンに依存するため、電場と垂直方向に 電流を伴わないスピン流が流れる。これが、遷移金属化合 物における内因性スピンホール効果の発現機構である。な お強磁性状態では、↑スピン電子と↓スピン電子の数が異 なるため電場と垂直方向にスピン偏極した電流が流れ、異 常ホール効果が発現する。

3.2. 4d, 5d 遷移金属

前節で、 Sr_2RuO_4 ではRuイオンの t_{2q} の軌道自由度に 由来する軌道 AB 効果によって、大きな内因性ホール効果 が出現することを見た。この結果は、軌道自由度を有する 一般の 4d,5d 遷移金属でも、 軌道 AB 効果による大きなスピ ンホール効果が出現することを示唆する。遷移金属におけ る内因性ホール効果に関するより深い理解を得るため、我々 は Pt を含む 12 種類の 4d,5d 遷移金属と、Au、Ag のスピン ホール効果を網羅的に調べたので、その紹介を行う³⁸⁾。計 算において我々は、Papaconstantopoulos 達によって提唱さ れた Naval Research Laboratory tight-binding (NRL-TB) 模型を用いた⁴⁰⁾。この模型は full potential LDA による第 一原理計算の結果をおよそ数 100K の精度で再現した 9 軌 道(s+p+d)強結合模型であり、異なるサイトの原子軌道 の重なり積分を考慮した非直交基底を採用している。また、 LS 結合定数 λ の値は第一原理計算に基づく計算値⁴¹⁾を用 いた。例えば Pt、Pd の λ はそれぞれ 41meV、18meV で ある。

式 (2) に基づくスピンホール伝導度の計算結果を図 3 に 示す³⁸⁾。横軸は $n = n_s + n_p + n_d$ であり、全ての金属で $n_s + n_p \approx 1$ ゆえ、d 電子数はほぼ n - 1 である。つまり Au,Agを除く「遷移金属」では d 軌道は開殻であり、フェ ルミ準位上の状態密度はほぼ d 電子が占める。図 3 を眺め ると、まず遷移金属の伝導度が (Ir を除き) n の関数とし てほぼ滑らかにつながることに気がつく。一方で、各金属 で結晶構造が異なり (n = 5, 6 は体心立方構造、n = 7, 8 は 六方最密充填構造、 $n = 9 \sim 11$ は面心立方構造をとる)、 従ってバンド構造も異なる。図 3 の結果は、遷移金属のス ピンホール効果の「大域的振舞い」が単純に n だけに依存 し、バンド構造の特殊性 (たとえばフェルミ準位上におけ る偶然縮退) は必ずしも本質ではないことを示唆している。

次にスピンホール伝導度の符号について、軌道 AB 効果 の観点から考察しよう。図2とは逆に、サイトあたりのホー ル数が1以下の場合を考えると、パウリの排他律より最高 準位を占める↓電子の軌道状態は $l_z = -1$ であるため、軌 道 AB 位相の符号は図2と逆になる。つまり電子数を増や すにつれて有効磁場の向きが逆転し、従ってスピンホール 伝導度の符号も逆転するはずである。実際、図3では d 軌 道の half-filling に相当する n = 6を少し超えるとスピン ホール伝導度が符号を変えている。なお最近大谷グループ によって、Pt に加えて Pd、Nd、Mo、Ta におけるスピン ホール伝導度が測定され、符号や絶対値が半定量的に理論 的予言と符合する結果が得られている⁴²⁾。ゆえに遷移金属 のスピンホール効果は、軌道 AB 効果を起源とする内因性 ホール効果であると結論される。

図 3 NRL-TB 模型に基づくスピンホール伝導度の計算結果³⁸⁾。ただし、 $\gamma = \hbar/2\tau \epsilon 0.02 \text{ Ry}$ とおいた。

3.3. グラフェン

軌道の自由度を取り入れたスピンホール伝導度の計算は、 グラファイトの単層であるグラフェンに対しても行なわれ た。グラフェンでは, p_z 軌道が π バンドを構成し,フェル ミ準位において電子は,有効質量ゼロのいわゆる Dirac フェ ルミオンに変貌する。他方, s, p_x, p_y 軌道は σ バンドを構 成し,フェルミ準位近傍で大きなバンドギャップを形成す る。前者を無視すると,グラフェンの電子状態は半導体の 2次元版とも言える。

この模型に LS 結合を導入すると,スピンホール伝導度が 計算できる。⁴³⁾ このとき π バンドのフェルミ準位にはバン ドギャップが現れ、undope のグラフェンでは後述の量子ス ピンホール効果が(理論上)発現する。また σ バンド「価電 子帯」上端はスピン軌道相互作用により縮退が取れ,電子 ドープにより大きなスピンホール伝導度が期待される。軌 道模型におけるスピンホール効果は,上述した有効的AB 効果(軌道間の電子の飛び移りと LS 結合による位相)と して理解できる⁴⁴⁾。このことは, p 型半導体におけるスピ ンホール効果も,軌道の自由度とLS 結合を取り入れた模型で説明が可能となることを示していよう。

4. 異常ホール効果

前章の説明より、遷移金属の内因性スピンホール効果は 複素軌道関数の軌道間の位相差(軌道 AB 位相)に由来し、 その符号や絶対値はスピン・軌道偏極に比例することが分 かった。それでは、異常ホール伝導度の符号や絶対値はど のように決まるのだろうか?図2に示すように、軌道 AB 位相は主に LS 結合のz 成分 $\lambda l_z s_z$ から生じる。LS 結合の z 成分はスピンを保存することから、強磁性状態における ホール伝導度は近似的に \uparrow 電子の寄与 σ_{SH}^{\uparrow} と \downarrow 電子の寄与 σ_{SH}^{\downarrow} とに分解可能と考えられる⁴⁵⁾:

$$\sigma_{\rm SH} \approx \sigma_{\rm SH}^{\uparrow} + \sigma_{\rm SH}^{\downarrow} \tag{5}$$

$$\sigma_{\rm AH} \approx \frac{2e}{\hbar} (\sigma_{\rm SH}^{\uparrow} - \sigma_{\rm SH}^{\downarrow}) \tag{6}$$

なお常磁性状態では $\sigma_{SH}^{\uparrow} = \sigma_{SH}^{\downarrow} = \sigma_{SH}/2$ である。ゆえに 異常ホール伝導度の符号や大きさは、スピンホール伝導度 の n 依存性によって決まることがわかる。

この予想の成否を調べるため、強磁性状態の NRL-TB 模型に基づき Fe,Ni,Co の σ_{AH} , σ_{SH} を計算し、式 (5)、(6) から σ_{SH}^{\uparrow} 、 σ_{SH}^{\downarrow} を求めた。Fe,Ni および Co の異常ホール 伝導度がそれぞれ 806 [Ω^{-1} cm⁻¹], -1087 [Ω^{-1} cm⁻¹], 341 [Ω^{-1} cm⁻¹] と求められ、実験と良い一致を示す⁴⁵)。図 4 に Fe,Ni,Co の σ_{SH}^{\uparrow} 、 σ_{SH}^{\downarrow} を記した。横軸の位置はそれぞれ $2n_{\uparrow}$ 、 $2n_{\downarrow}$ である。さらに図 4 には、「常磁性状態」を仮定した NRL-TB 模型で計算した 3d 金属のスピンホール伝導度を記 した。得られた常磁性状態の σ_{SH}^{para} は d 電子数 $n_d \sim 6.5$ を境 に符号を変え、4d,5d 遷移金属の結果と同様の振舞いを示す。 また Fe,Ni,Co の σ_{SH}^{\uparrow} 、 σ_{SH}^{\downarrow} が、関係式 $2\sigma_{SH}^{\uparrow} \approx \sigma_{SH}^{para}(2n_{\uparrow}),$ $2\sigma_{SH}^{\downarrow} \approx \sigma_{SH}^{para}(2n_{\downarrow})$ を満足することがわかる。これは内因 性異常ホール効果の起源が、スピンホール効果と同様軌道 AB 位相であることを意味する。

図 4 強磁性 NRL-TB 模型に基づく Fe,Ni,Co の σ_{SH}^{σ} ($\sigma = \uparrow, \downarrow$)、およ び常磁性 NRL-TB 模型に基づく 3d 遷移金属のスピンホール伝導度 $\sigma_{SH}^{\text{para}}$ の計算結果⁴⁵⁾。なお $n_d \approx n - 1$ である。

最後に、パイロクロア結晶構造を持つ遍歴強磁性金属 Nd₂Mo₂O₇ ($T_c = 93K$)の異常ホール効果について述べ る^{46, 47, 48, 49, 50}。中性子散乱実験⁴⁸⁾によると $T_N \approx 30K$ で Ndの局在f電子がスピンアイス秩序と呼ばれる互いに傾い たスピン配置を示し、d-f交換相互作用の結果、金属伝導を 担う Mo の 4d 電子の強磁性モーメントが角度 θ だけ傾いた tilted ferromagnetism が T_N 以下で実現する。図5(a)に Mo の[111]面のカゴメ格子を示す。 T_N 以下で出現する顕著な 異常ホール効果の変化は、Moの巨視的磁化 $M_{Mo} \propto \cos\theta$ に 比例する従来型の異常ホール効果では到底説明できず、「ス ピン構造がもたらす非従来型異常ホール効果」として注目 を集めた。その起源が3スピンの立体角($\propto \theta^2$)に σ_{AH} が 比例するスピンカイラリティー機構であるという主張^{47, 49)} と、それでは説明できないという主張^{46, 48, 50)}が時を同じく してなされ、長年未解決であった。

その説明として富澤たちは軌道 AB 効果の理論を提唱し た⁵¹⁾:軌道自由度を考慮すると、図5(b)の三角形の経路を電 子が一周する際に、各 Mo サイトで原子軌道の位相差に由来 するベリー位相因子 $-\sqrt{3/2} heta$ を獲得することがわかる。こ のベリー位相は、経路中を貫ぬく仮想磁束 $\Phi \propto \theta$ による AB 位相と類似しており、その出現条件は単に non-collinearity である。その結果、θに線形の顕著な異常ホール効果が出 現する。 $Nd_2Mo_2O_7$ では $\theta \ll 1$ であることから、上述の スピンカイラリティー機構よりも軌道機構が重要である51)。 さらに T_N 以下の「特異な異常ホール効果」は Nd の磁化 $M_{\rm Nd}$ に比例するが、 $M_{\rm Nd}$ と θ は比例することから、軌道 機構として自然に理解できることがわかった。近年では新 物質開発の発展に伴い、フラストレート構造を有する遍歴 電子系が数多く見つかっており、tilted ferromagnetismの ような非自明な磁気秩序がもたらす(カイラリティー機構 や軌道機構による)異常ホール効果の研究が進展すると期 待される。

5. 内因性ホール効果の半古典論的理解

遷移金属のスピンホール効果がバンド構造の詳細に依存 しないことから、自由電子の海に d 軌道が周期的に並んだ 「周期アンダーソン模型」を考える。すなわち、伝導電子 (s電子)を自由電子として扱い、局在した d 軌道と混成しつつ 金属中を運動するという模型であり、遷移金属のバンド構 造の本質をとらえた単純化である。波数ベクトル k の平面 波と角運動量 $|l, l_z\rangle = |2, m\rangle$ の d 軌道との s-d 混成項は、内 積 $\langle k|l, l_z\rangle$ 、つまり d 電子の波数表示の波動関数 $Y_2^m(k) \propto$ $\exp(im\phi_k)$ に比例する。ただし $\phi_k = \tan^{-1}(k_y/k_x)$ であり、 その微分は $\nabla_k \phi_k = (-k_y, k_x, 0)/(k_x^2 + k_y^2)$ である。ハミ ルトニアン \hat{H}_k は s-d 混成項を含むことから、電流演算子 $\hat{J}_k = e \nabla_k \hat{H}_k$ は原子軌道の位相に由来する、波数ベクトル k に直交する「異常速度」を含み、内因性ホール効果を与

図 5 (a) $Nd_2Mo_2O_7 \sigma$ (1,1,1) 面上のカゴメ格子で実現する、角度 θ だけ tilt した強磁性状態。青丸は Mo サイトを表す。(b)Mo サイトで生 じる軌道 Aharonov-Bohm 位相因子と有効磁束。

えることが紺谷 · 山田により示された⁹⁾。周期アンダーソン 模型では σ_{AH} や σ_{SH} が解析的に求まり、ホール効果の研究 において大変有用である。

ここでは

d

軌道の角運動量に着目した内因性ホール効果の 半古典的考察を紹介しよう570。90年代ごろまで内因性ホー ル効果が市民権を得るに至らなかった理由の一つに、半古 典論に基づく直感的説明が無かったことがあげられるので、 ここでその提示を行うことは意義深いであろう。周期アン ダーソン模型を考える。平衡状態では *s* → *d* という混成と $d \rightarrow s$ という混成は等確率で起きるため、 n_d は不変であ る。ここで、y方向に電場 E_uをかけて非平衡定常状態が 成り立ったとしよう。図 6(a) に、フェルミ準位の y 依存性 $\mu - eE_u y$ と、d 軌道の準位 E_d を示す。 r_d は d 軌道の半径 である。このとき、定常状態の要請より nd は不変であるも のの、場所 $y = +r_d$ ($y = -r_d$) では $s \rightarrow d$ ($d \rightarrow s$) とい う混成が優勢である。ここでフェルミ準位上の LS 結合の 期待値 $\langle l \cdot s \rangle_{\mu}$ 、すなわち d 軌道のスピン・軌道偏極率、が 負であるとする。このとき、↑(↓)スピンの伝導電子は主 に $l_z = -1$ ($l_z = +1$)の軌道状態と混成する。s-d 混成に おける角運動量保存則より、混成前後の伝導電子は d 軌道 の中心から見て、スピンに応じて角運動量±1を持つ。そ のため、電場 $E_u > 0$ の場合には図 6(b) に示すように、*s*-*d* 混成により \uparrow 電子は -x 方向の、 \downarrow 電子は +x 方向の運動 量を受け、その結果 -x 方向にスピン流が流れる。つまり、 (l·s)_µの符号と等しいスピンホール伝導度が生じる。フン トの第3則より、 $\langle l \cdot s \rangle_{\mu}$ の符号は $n_d < 5$ では負、 $n_d > 5$ で は正なので、スピンホール伝導度は $n_d < 5$ では負、 $n_d > 5$

では正と結論される。より定量的な計算より、おそよ

$$\sigma_{\rm SH} \approx (e/4a) \cdot \langle \boldsymbol{l} \cdot \boldsymbol{s} \rangle_{\mu} / \hbar^2$$
$$\approx 2 \times (\langle \boldsymbol{l} \cdot \boldsymbol{s} \rangle_{\mu} / \hbar^2) \times 10^3 \Omega^{-1} \mathrm{cm}^{-1} \qquad (7)$$

と見積もられる⁵⁷⁾。ただし $a \approx 3 \text{\AA}$ は原子間隔である。

この機構では、電場と垂直な「異常速度」は電場下にお けるスピンに依存した非対称な *s*-*d* 混成から出現し、電子 の不純物との衝突による緩和過程とは無関係である。よっ て、たとえ緩和時間 τ が発散しようとも、スピンホール伝 導度は τ とは無関係に一定値を取ることが分かる。周期ア ンダーソン模型では伝導電子と d 軌道の混成は常に起きる が、並進対称性を持つので不純物が存在しない限り $\tau = \infty$ である。なおここでの半古典論的説明と、前節で紹介した 軌道 AB 効果に基づく説明は、ともに d 軌道の角運動量の 重要性を強調しており、本質は同じである。

図 6 (a) 電場 E_y 下の非平衡定常状態におけるフェルミ準位 $\mu - eE_y y$ と、d 準位 (virtual bound state) E_d を記した。(b) 周期アンダーソン 模型におけるスピンホール効果の起源。混成の位置と角運動量保存則の要 請より、入射および放出電子の速度ベクトルは電場方向から傾く。

6. クロスオーバー現象

これまで内因性ホール効果がバンド間励起の寿命 $\hbar/\Delta(\Delta$ はバンド分裂幅)に比例し、電子の緩和時間に依存しない、 つまり不純物等によってスピン(異常)ホール伝導度が変 化しないと述べてきた。しかしこれは、緩和時間 τ が十分 長いときのみ正しい。論文⁹⁾により、 τ が \hbar/Δ より短くな ると、バンド間励起の寿命が τ に律則されるためホール効 果は減少することが示された。遷移金属では Δ は数千 K で あり、緩和時間 $\tau^* \equiv \hbar/\Delta$ に対応する電気抵抗は $\rho^* \sim 100$ $\mu\Omega$ cm である。グリーン関数法に基づく解析によると、関 係式 $\sigma_{SH(AH)} \propto (\rho^{*2} + \rho^2)^{-1}$ が得られる⁹⁾。すなわち内因性 ホール効果は ρ^* を境として、低抵抗領域で $\sigma_{SH(AH)} \propto \rho^0$ 、 高抵抗領域で $\sigma_{SH(AH)} \propto \rho^{-m}$ ($m \approx 2$)というクロスオー バー的挙動を示す^{53, 38)}。つまり高抵抗領域では、正常ホー ル伝導度と同じスケール則を満たす。図7に Ta, W におけ る σ_{SH} 計算結果を示すが、mの正確な値は物質ごとのバン ド構造の詳細に依存する。最近 Rashba 型 2DEG 模型において、やはり高抵抗領域で σ_{AH} が減少するクロスオーバー的挙動が見出だされた¹³⁾。ただし高抵抗領域の振る舞いは $\rho^{-1.6}$ と、m = 2 より小さいべきを報告している。

内因性ホール効果のクロスオーバー的挙動は、多くの重 い電子系⁹⁾ や遷移金属化合物^{54,55)}の異常ホール効果にお いて観測されている。実験の解析で注意すべきことは、上 記の理論で得られた m の値は (i) 電子密度一定の条件で、 (ii) $\rho \sim 100 \mu\Omega$ cm 以上の高抵抗領域、(iii) かつ平均自由行 程が格子間隔より長い条件下で得られたという点である。 遷移金属で不純物原子ドープにより電気抵抗を変化させた 場合、往々に電子密度も変化してしまうため、mの導出に 際して何らかの補正が必要であろう。なお最近 CrO₂ 薄膜 で m = 1.6を観測したという報告があったが⁵⁶⁾、これは $10 - 100 \mu\Omega$ cm の中間抵抗領域における値であり、高抵抗 領域における m は 2 を超えている。

図 7 Ta, W におけるスピンホール伝導度の絶対値の $\gamma(=\hbar/2\tau)$ 依存性。 $\gamma \sim 0.05$ Ry ($\rho \sim 100\mu\Omega$ cm)を境に、それより低抵抗領域でほぼ $\sigma_{SH} \sim constant、高抵抗領域ではおよそ <math>\sigma_{SH} \propto \gamma^{-2} \propto \rho^{-2}$ が成り立つ。

最後に、内因性ホール伝導度の温度依存性について言及 したい。フェルミ準位上の電子がもたらす通常の輸送現象 では、緩和時間 τ の温度依存性を反映した温度変化が観測 される。しかし内因性ホール効果はバンド間の電子 · 正孔 励起に由来することから、 $T \ll \Delta \sim 1000$ K ではホール伝 導度の温度依存性は小さい。NRL-TB 模型に基づく各種遷 移金属の解析では、T = 0K とT = 1000K とのホール伝導 度の温度変化は高々数 10%程度であり、文献³⁴⁾の実験結果 と符合する。

7. 将来の展望

これまで遷移金属における内因性スピンホール効果と異 常ホール効果の包括的理解が可能であることを述べてきた。 本章では関連する発展のうち、我々が重要だと考える3点 について紹介したい。

7.1. 量子スピンホール効果

本稿では金属における内因性ホール効果を扱ってきた。 しかし 2005 年に Kane と Mele が、スピン軌道相互作用に より絶縁体化したグラフェンで、スピンホール伝導度が(ほ ぼ)量子化した量子スピンホール効果が出現することを理 論的に示した⁴⁴⁾。量子スピンホール効果は、量子ホール効 果のスピン版といえる。これらの絶縁体や半導体では試料 端にスピン流を運ぶ特殊な金属状態が実現し、その状態は 不純物等の散乱からトポロジカルに保護され、安定に存在 すると期待される。最近では半導体 HgTe や、また Bi 合金 など3次元物質の表面状態に発現する量子スピンホール状 態が理論的、実験的に盛んに研究されている。

7.2. 軌道ホール効果

遷移金属では電荷、スピンのみならず、 d 軌道の角運動 量が電場と垂直方向に流れる「軌道ホール効果」の発現が 理論的に予言される⁵⁷⁾。軌道ホール効果は LS 結合を必要 としないため、軌道ホール伝導度は異常(スピン)ホール 伝導度より一桁大きく、常に正である。論文57)で議論され ているように、内因性ホール効果のうちで LS 結合を必要 としない「軌道ホール効果」が最も本質的であり、スピン 軌道偏極率 〈l · s〉,, が有限のときには軌道流にスピン流が 付随する結果、スピンホール効果が発現すると考えること ができる。つまり軌道ホール効果を中心に、異常・スピン ホール効果を含めた内因性ホール効果の統一的理解が可能 である。現在、軌道ホール効果の実験的観測はまだ無いが、 軌道ホール効果によって電場と平行な試料端に発生する d 軌道角運動量の磁性を、Kerr 効果を用いた光学測定によっ て測定できる可能性がある。将来、スピンホール効果より ー桁大きな軌道ホール効果を用いた orbitronics 装置の実現 が可能かもしれない。

7.3. 外因性機構について

不純物散乱とLS 結合から生じる外因性ホール効果のうち、スキュー散乱項は不純物ポテンシャルの3次の散乱項から出現する非対称散乱 $T(\mathbf{k}, \mathbf{k}') \propto (\mathbf{k} \times \mathbf{k}')_z$ に由来し、ホール伝導度は $\sigma_{SH}^{skew} \propto \tau^2/\tau_{skew}$ となる。ただし τ_{skew} はスキュー散乱による緩和時間であり、全緩和時間 τ より必ず大きい。もし $\tau_{tot} \sim \tau_{skew}$ なら $\sigma_{SH}^{skew} \propto \tau \propto \rho^{-1}$ であり、低抵抗領域で大きな値を取りうる。最近、希土類元素⁵⁸⁾ や Fe⁵⁹⁾ などの磁性不純物を単純金属に少量ドープすることで、スキュー散乱によって Pt を凌駕する巨大なスピンホール効果が実現するという理論的予言がなされ、今後の実験的検証が期待される。

またサイドジャンプ項 σ_{SH}^{si} は、不純物ポテンシャルの角 運動量に由来する異常速度が与えるホール効果であり、内 因性効果と関連がある。最近我々は、単純金属中における遷 移金属原子の不純物が与える σ_{SH}^{si} が、内因性効果の式(7) と符号や絶対値がほぼ一致するという、大変興味深い解析 結果を得た⁶⁰⁾。この事実は、内因性機構とサイドジャンプ 項が(内因性、外因性の違いに関わらず)大変密接な関係 にあることを示唆し、多結晶遷移金属では両者の区別は事 実上不可能かもしれない。

8. おわりに

遷移金属中の電子は電荷、スピンに加えて、d 軌道の自由 度を獲得する。この真空中の電子には存在しない新自由度 は、遷移金属化合物において様々な豊かな物理現象をもた らす。本稿では、遷移金属では d 軌道の位相に由来する有 効磁場(軌道 AB 効果)が発生するため、電荷やスピンの自 由度が電場と垂直方向に流れる内因性ホール効果が発現す ることを説明してきた。強束縛模型に基づく網羅的な解析 に基づき、スピンホール伝導度がスピン軌道偏極率 $\langle l \cdot s \rangle_{\mu}$ に比例するという簡明な結果を得た。ゆえにスピンホール 伝導度は d 電子数 n_d の増大に従い、フントの第 3 則に従っ て負から正に変わる。さらに、遷移金属の異常ホール伝導 度は $\sigma_{
m SH}^{\uparrow}$ と $\sigma_{
m SH}^{\downarrow}$ の差によって与えられる。このように、d電子系における異常ホール効果、スピンホール効果が軌道 AB 効果の観点から統一的に理解できることが、ご理解い ただけたのではないかと思う。本稿の最後までお付き合い いただいた読者賢兄に感謝しつつ、ここで筆をおきたい。

以上述べてきた仕事は Prof. Gerrit Bauer、山田耕作先 生、田中拓郎氏、富澤剛氏、内藤聖之博士、内藤隆氏、大成 誠一郎博士との共同研究に多くを負っており、この場を借 りて感謝の意を表したいと思います。特に論文⁹⁾は、紺谷 が山田耕作先生の指導のもとで修士論文としてまとめたも のであり、深く感謝いたします。さらに大谷義近先生、木 村崇先生、斎藤英治先生、佐藤正俊先生に実験に関する貴 重な議論をしていただきました。また理論面では福山秀敏 先生、川村光先生、Prof. J. Sinova、河野浩先生に有益な 議論をいただき、ここに感謝いたします。

参考文献

- 1) E. H. Hall, Amer. J. Math. 2, 287 (1879).
- 2) E. H. Hall, Philos. Mag. 19, 301 (1880).
- 3) A. Kundt, Annalen der Phys. und Chemie, 49, 257 (1893).
- R. Karplus and J. M. Luttinger: Phys. Rev. 95 (1954) 1154.
- 5) J. Smit: Physica 24 (1958) 39.
- 6) L. Berger, Phys. Rev. B 2 (1970) 4559.
- J. M. Ziman: *Electrons and Phonons* (Clarendon, Oxford, 1960).

- 8) なお電子相関が強い金属では電子間散乱効果(バーテックス 補正)が重要になり、単純な τ のスケール則はしばしば破綻 する; H. Kontani, Rep. Prog. Phys. 71 (2008) 026501.
- H. Kontani and K. Yamada: J. Phys. Soc. Jpn. 63 (1994) 2627.
- 10) Y. Yao, L. Kleinman, A.H. MacDonald, J. Sinova, T. Jungwirth, D.S. Wang, E. Wang and Q. Niu: Phys. Rev. Lett. 92 (2004) 037204.
- Z. Fang, N. Nagaosa, K. Takahashi, A. Asamitsu, R. Mathieu, T. Ogasawara, H. Yamada, M. Kawasaki, Y. Tokura, and K. Terakura, Science **302** (2003) 92.
- 12) X. Wang, D. Vanderbilt, J. R. Yates, and I. Souza, Phys. Rev. B 76, 195109 (2007).
- N. Nagaosa, J. Sinova, S. Onoda, A.H. MacDonald, and N.P. Ong, arXiv:0904.4154.
- M. I. Dyakonov et al., Zh. Eksp. Teor. Fiz. Pis'ma Red.
 13, 657 (1971).
- 15) J. E. Hirsh et al., Phys. Rev. Lett. 83, 1834 (1999).
- 16) S. Takahashi et al., J. Phys. Soc. Jpn. 77, 031009 (2008).
- 17) G. Dresselhaus, Phys. Rev. 100, 580 (1955).
- 18) E. I. Rashba, Fiz. Tverd. Tela 2, 1224 (1960) [Sov. Phys. Solid State 2, 1109 (1960)].
- Yu. A. Bychkov and E. I. Rashba, Pis'ma Zh. Eksp. Teor. Fiz. **39**, 66 (1984) [JETP Lett. **39**, 78 (1984).
- 20) S. Murakami, N. Nagaosa, and S. C. Zhang, Science 301, 1348 (2003).
- 21) J. Sinova, D. Culcer, Q. Niu, N. A. Sinitsyn, T. Jungwirth, and A. H. MacDonald: Phys. Rev. Lett. 92 (2004) 126603.
- 22) 村上修一:日本物理学会誌 62 (2007) 2.
- 23) J. Inoue, G. E. W. Bauer, and L. W. Molenkamp, Phys. Rev. B70 (2004) 041303(R).
- 24) J. Inoue, T. Kato, Y. Ishikawa, H. Itoh, G. E. W. Bauer, and L. W. Molenkamp, Phys. Rev. Lett., 97, 046604 (2006).
- 25) T. Kato, Y. Ishikawa, H. Itoh, and J. Inoue, New J. Phys. 9, 350 (2007).
- 26) T. Kato, Y. Ishikawa, H. Itoh, and J. Inoue, Phys. Rev. B 77, 233404 (2008).
- 27) S. Murakami, Phys. Rev. B 69, 241202(R)(2004).
- 28) B. A. Bernevig and S–C. Zhang, Phys. Rev. Lett. 95, 16801 (2005).
- 29) J. Inoue, T. Kato, G. E. W. Bauer, and L. W. Molenkamp, Semicond. Sci. Technol. 24, 064003 (2009).
- 30) Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom, Science **306**, 1910 (2004).
- J. Wunderlich, B. Kaestner, J. Sinova, and T. Jungwirth, Phys. Rev. Lett. 94, 047204 (2005).
- 32) H. Kontani, J. Goryo, and D. S. Hirashima: Phys. Rev. Lett. **102**, 086602 (2009).
- 33) E. Saitoh, M. Ueda, H. Miyajima and G. Tatara, Appl. Phys. Lett. 88 (2006) 182509.
- 34) T. Kimura, Y. Otani, T. Sato, S. Takahashi, and S. Maekawa: Phys. Rev. Lett. **98** (2007) 156601; L. Vila, T. Kimura, and Y. Otani, Phys. Rev. Lett. **99** (2007) 226604.

- 35) H. Kontani, T. Tanaka, D.S. Hirashima, K. Yamada, and J. Inoue, Phys. Rev. Lett. 100, 096601 (2008).
- 36) G.Y. Guo, S. Murakami, T.-W. Chen, N. Nagaosa, Phys. Rev. Lett. 100, 096401 (2008).
- 37) H. Kontani, M. Naito, D.S. Hirashima, K. Yamada, and J. Inoue: J. Phys. Soc. Jpn. **76** (2007) 103702.
- 38) T. Tanaka, H. Kontani, M. Naito, T. Naito, D. S. Hirashima, K. Yamada, and J. Inoue, Phys. Rev. B 77, 165117 (2008).
- 39) K.K. Ng and M. Sigrist., Europhys. Lett. 49, 473 (2000).
- 40) M.J. Mehl and D.A. Papaconstantopoulos: Phys. Rev. B 54 (1996) 4519.
- F. Herman and S. Skillman, Atomic Structure Calculations (Prentice-Hall, Englewood Cliffs, NJ, 1963).
- 42) 木村崇、大谷義近:日本物理学会誌 63 (2008) 862.
- 43) S. Onari, Y. Ishikawa, H. Kontani, and J. Inoue, Phys. Rev. B 78, 121403(R) (2008).
- 44) C.L. Kane and E.J. Mele, Phys. Rev. Lett. 95, 226801 (2005).
- 45) T. Naito, D. S. Hirashima, and H. Kontani: unpublished.
- 46) S. Yoshii, S. Iikubo, T. Kageyama, K. Oda, Y. Kondo, K. Murata, and M. Sato, J. Phys. Soc. Jpn. 69 (2000) 3777.
- 47) Y. Taguchi and Y. Tokura, Europhys. Lett. 54 (2001) 401.
- 48) Y. Yasui, Y. Kondo, M. Kanada, M. Ito, H. Harashina, M. Sato, and K. Kakurai, J. Phys. Soc. Jpn. 70 (2001) 284.
- 49) Y. Taguchi, T. Sasaki, S. Awaji, Y. Iwasa, T. Tayama, T. Sakakibara, S. Iguchi, T. Ito, and Y. Tokura, Phys. Rev. Lett. **90**, 257202 (2003).
- 50) Y. Yasui, T. Kageyama, T. Moyoshi, M. Soda, M. Sato and K. Kakurai, J. Phys. Soc. Jpn. **75** (2006) 084711; 中 性子散乱によると (θ²) は ~ 3 Tesla で極小値をとり、異常 ホール効果の磁場依存性とは相いれないことが示された。
- 51) T. Tomizawa and H. Kontani, Phys. Rev. B **80**, 100401(R) (2009); Nd₂Mo₂O₇ の異常ホール伝導度は、軌 道効果の項は $\lambda J_{df}/\Delta$ 、カイラリティー効果の項は $(J_{df})^2/\Delta$ である。 $J_{df} \sim 10$ K は *d*-*f* 交換相互作用、 $\lambda \sim 1000$ K は Mo の LS 結合定数であり、Nd₂Mo₂O₇ では軌道効果が大きい と考えられる。なお $E \sim 1000$ K を強磁性交換磁場として、 $|\theta| \sim J_{df}/E \ll 1$ である。
- 52) 永長直人:日本物理学会誌 59 (2004) 520.
- 53) H. Kontani, T. Tanaka and K. Yamada, Phys. Rev. B 75, 184416 (2007).
- 54) T. Miyasato, N. Abe, T. Fujii, A. Asamitsu, S. Onoda, Y. Onose, N. Nagaosa, and Y. Tokura, Phys. Rev. Lett. 99, 086602 (2007).
- 55) D. Satoh, K. Okamoto, and T. Katsufuji, Phys. Rev. B 77, 121201(R) (2008).
- 56) W. R. Branford, K. A. Yates, E. Barkhoudarov, J. D. Moore, K. Morrison, F. Magnus, Y. Miyoshi, P. M. Sousa, O. Conde, A. J. Silvestre, and L. F. Cohen, Phys. Rev. Lett. **102**, 227201 (2009).
- 57) H. Kontani, T. Tanaka, D. S. Hirashima, K. Yamada, and J. Inoue, Phys. Rev. Lett. **102**, 016601 (2009).

- 58) T. Tanaka and H. Kontani, New J. Phys. **11** (2009) 013023.
- 59) G.Y. Guo, S. Maekawa, and N. Nagaosa, Phys. Rev. Lett. 102, 036401 (2009).
- 60) T. Tanaka and H. Kontani: unpublished.

(2010年4月12日原稿受付)

Anomalous Hall effect and spin Hall effect in transiton metals

Hiroshi Kontani, Dai S. Hirashima, and Jun-ichiro Inoue

abstract: In metals, various kinds of Hall effects emerge, in addition to normal Hall effect under magnetic field. One example is the anomalous Hall effect in ferromagnets, and another example is the spin Hall effect in paramagnetic metals. These unconventional Hall effects without magnetic field have been attracting increasing attention, in terms of both fundamental interest and spintronics architecture. In this review article, we discuss the recent progress in intrinsic Hall effect that is essentially independent of randomness or impurities. We explain that the origin of commonly-observed giant intrinsic Hall effect in transition metals is the Berry phase induced by the d-orbital degrees of freedom.